63 research outputs found

    Optimal control of a heroin epidemic mathematical model

    Get PDF
    A heroin epidemic mathematical model with prevention information and treatment, as control interventions, is analyzed, assuming that an individual's behavioral response depends on the spreading of information about the effects of heroin. Such information creates awareness, which helps individuals to participate in preventive education and self-protective schemes with additional efforts. We prove that the basic reproduction number is the threshold of local stability of a drug-free and endemic equilibrium. Then, we formulate an optimal control problem to minimize the total number of drug users and the cost associated with prevention education measures and treatment. We prove existence of an optimal control and derive its characterization through Pontryagin's maximum principle. The resulting optimality system is solved numerically. We observe that among all possible strategies, the most effective and cost-less is to implement both control policies.publishe

    Random fractional generalized Airy differential equations: A probabilistic analysis using mean square calculus

    Full text link
    [EN] The aim of this paper is to study a generalization of fractional Airy differential equations whose input data (coefficient and initial conditions) are random variables. Under appropriate hypotheses assumed upon the input data, we construct a random generalized power series solution of the problem and then we prove its convergence in the mean square stochastic sense. Afterwards, we provide reliable explicit approximations for the main statistical information of the solution process (mean, variance and covariance). Further, we show a set of numerical examples where our obtained theory is illustrated. More precisely, we show that our results for the random fractional Airy equation are in full agreement with the corresponding to classical random Airy differential equation available in the extant literature. Finally, we illustrate how to construct reliable approximations of the probability density function of the solution stochastic process to the random fractional Airy differential equation by combining the knowledge of the mean and the variance and the Principle of Maximum Entropy.This work has been partially supported by the Ministerio de Economia y Competitividad grant MTM2017-89664-P. The authors express their deepest thanks and respect to the editors and reviewers for their valuable comments.Burgos-Simon, C.; Cortés, J.; Debbouche, A.; Villafuerte, L.; Villanueva Micó, RJ. (2019). Random fractional generalized Airy differential equations: A probabilistic analysis using mean square calculus. Applied Mathematics and Computation. 352:15-29. https://doi.org/10.1016/j.amc.2019.01.039S152935

    On the stability of stationary solutions in diffusion models of oncological processes

    Get PDF
    We prove a sufficient condition for the stability of a stationary solution to a system of nonlinear partial differential equations of the diffusion model describing the growth of malignant tumors. We also numerically simulate stable and unstable scenarios involving the interaction between tumor and immune cell

    General fractional-order anomalous diffusion with non-singular power-law kernel

    Get PDF
    In this paper, we investigate general fractional derivatives with a non-singular power-law kernel. The anomalous diffusion models with non-singular power-law kernel are discussed in detail. The results are efficient for modelling the anomalous behaviors within the frameworks of the Riemann-Liouville and Liouville-Caputo general fractional derivatives. © 2017 Society of Thermal Engineers of Serbia

    Approximate controllability of fractional nonlocal delay semilinear systems in Hilbert spaces

    No full text
    We study the existence and approximate controllability of a class of fractional nonlocal delay semilinear differential systems in a Hilbert space. The results are obtained by using semigroup theory, fractional calculus and Schauders fixed point theorem. Multi-delay controls and a fractional nonlocal condition are introduced. Furthermore, we present an appropriate set of sufficient conditions for the considered fractional nonlocal multi-delay control system to be approximately controllable. An example to illustrate the abstract results is given. © 2013 Taylor & Francis
    corecore